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Abstract. Fully Homomorphic Encryption (FHE) enables computation over encrypted
data and is considered a fundamental tool for privacy-preserving systems. Despite sig-
nificant theoretical progress, its practical adoption remains limited. One contributing
factor is the absence of reusable, application-level components suitable for integration
into real-world systems.
This work introduces a library of FHE components developed through a competition-
based framework. The components are outcomes of a series of formalized challenges
published on the FHERMA platform, each targeting a specific challenge—such
as comparison, sorting, or matrix operations—under concrete cryptographic and
performance constraints.
This initial release includes contributions from independent researchers and reflects
a variety of approaches across different FHE schemes. The library is intended to
expand over time as new challenges are introduced and solved, forming a foundation
for building and evaluating privacy-preserving applications.
Keywords: fhe, challenges, cryptography, privacy, fhe-computer, encryption, library,
fherma
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1 Introduction
Fully Homomorphic Encryption (FHE) is a powerful cryptographic primitive that

enables computations over encrypted data without access to the secret key. This capability
has opened new frontiers in data privacy and security, making FHE particularly relevant
in sensitive domains such as finance, healthcare, blockchain, and cloud computing. In
machine learning (ML), for example, FHE enables the secure outsourcing of computation
to untrusted environments while preserving the confidentiality of both data and models.
It also plays a pivotal role in distributed and federated ML settings, supporting secure
collaboration without data leakage [21]. Similarly, in data analysis and blockchain, FHE
enables privacy-preserving analytics and confidential smart contracts, respectively.

Despite significant advances in theory and implementation, the adoption of FHE
at the application level remains limited. Several factors contribute to this gap. First,
the development of FHE-based applications typically demands a high level of expertise
in cryptography, numerical methods, and application-specific domains. Second, FHE
operations are computationally intensive, often requiring substantial processing resources
and optimization effort. Third, the field lacks standardized tools, benchmarks, and
methodologies for building, testing, and comparing FHE-based software systems.

Among these challenges, one important limitation is the absence of an accessible library
of high-level, reusable FHE components. Most existing FHE libraries expose only low-level
primitives, requiring developers to construct even basic application logic from scratch.
This significantly raises the barrier to entry and hinders the creation of robust, portable
FHE applications.

To address this gap, we previously introduced the FHERMA platform [5], a community-
driven initiative that formulates and hosts challenge problems designed to capture common
application-level tasks in FHE. These challenges are organized across domains such as
ML and blockchain, and contributors submit solutions that are automatically verified for
correctness and performance. Accepted solutions form the basis of a modular, open-source
library of FHE components.

In this paper, we present the first public release of the FHERMA FHE Components
Library, a curated collection of verified solutions to the initial FHERMA challenges. Each
component in the library addresses a concrete task (e.g., comparison, sorting, matrix
operations) under strict cryptographic and efficiency constraints. The components are
designed to be composable and interoperable, enabling developers to rapidly prototype
privacy-preserving applications without deep knowledge of FHE internals.

The library is intended to evolve over time as new challenges are posed and solved. Our
long-term vision is to develop a living, community-maintained resource that accelerates
the adoption of FHE by reducing technical barriers and establishing a foundation for
standardized development practices. This document will be continuously expanded to
reflect contributions from across the FHE ecosystem.

1.1 Overview of FHE Capabilities
Fully Homomorphic Encryption (FHE) enables arbitrary computations on encrypted

data without revealing the underlying plaintext. This cryptographic primitive has emerged
as a foundational building block for privacy-preserving technologies, offering the ability to
process sensitive information without compromising confidentiality.

Modern FHE schemes fall into three main categories, distinguished by the arithmetic
they support:

• Integer arithmetic schemes, such as BGV [9] and BFV [15, 8], operate over
modular integer rings and are particularly suited for applications that require exact
computations over vectors, including private statistics and secure voting protocols.

3



• Boolean circuit schemes, including DM [14] and CGGI [13], focus on evaluating
logic circuits and decision diagrams. These schemes often offer fast bootstrapping
and compact ciphertexts but have a limited support for Single Instruction Multiple
Data (SIMD)-style batch processing. Note that these schemes can also support small
integers.

• Approximate arithmetic schemes, such as CKKS [12], support computations on
real- and complex-valued vectors with bounded precision. This class is particularly
effective for implementing machine learning inference, signal processing, and other
numerical tasks in an encrypted domain.

The most widely used schemes rely on the Learning With Errors (LWE) or Ring-
LWE hardness assumptions for security. A fundamental constraint across all classes is
the presence of noise that accumulates with each encrypted operation. Bootstrapping,
a mechanism for noise management, enables unbounded computation but introduces
significant overhead. As a result, performance constraints—especially multiplicative
depth—continue to influence how FHE applications are designed.

1.2 Application-Level Challenges
Despite significant advances in the theory and implementation of Fully Homomorphic

Encryption (FHE), the development of real-world applications remains a challenging task.
One of the primary obstacles is the substantial gap between cryptographic libraries and the
needs of application developers. Most libraries provide access to low-level primitives—such
as ciphertext arithmetic and key management—without offering abstractions suitable for
expressing higher-level computational logic.

As a result, developers must construct even basic operations, such as comparisons or
control flow, manually using low-level tools. This often involves managing scheme-specific
constraints like ciphertext noise, multiplicative depth, level consumption, and data packing.
The lack of abstraction not only increases the cognitive and engineering burden but also
leads to redundant implementations, non-portable code, and a higher likelihood of subtle
errors or inefficiencies.

In schemes such as CKKS, additional complexity arises from approximate computa-
tion. Developers must balance trade-offs between accuracy, circuit depth, and perfor-
mance—frequently relying on advanced techniques such as polynomial approximations,
rescaling heuristics, and bootstrapping strategies. These challenges become more pro-
nounced in applications involving complex logic or large data flows, such as private machine
learning or secure data aggregation.

Altogether, the absence of well-established methods for expressing and composing
functionality at the application level limits the scalability, maintainability, and adoption of
FHE technologies. Bridging this gap is critical for enabling the development of secure and
privacy-preserving applications that are both practical and trustworthy.

1.3 A modular component library for application layer
A major challenge in FHE application development is the lack of abstraction layers

that separate algorithmic logic from scheme-specific cryptographic details. Developers
must translate high-level tasks into low-level operations while managing constraints such
as noise growth, ciphertext levels, and packing formats. This not only increases the risk of
error but also discourages modularity, reuse, and experimentation.

To address this, we propose a modular FHE component library designed to sit at the
intermediate FHE Components layer — between low-level cryptographic operations and
high-level compilers or user-facing APIs. The layered design is depicted in Figure 1.
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Figure 1: Multi-layer design of FHE development environment

This idea aligns with the layered ecosystem design presented in [4] and implemented in
OpenFHE library, where cryptographic, arithmetic, and application logic are separated
into distinct layers to promote standardization and reusability.

In this design:

• The Cryptography layer handles scheme-specific details such as key management,
encryption/decryption, bootstrapping, and noise tracking.

• The FHE Components layer defines modular building blocks such as encrypted
comparison, ReLU, matrix multiplication, or sorting. These components are designed
to be reusable and portable across FHE schemes.

• The Developer Interface layer integrates these components into compilers or
DSLs (e.g., HEIR, EVA), exposing high-level APIs to application developers.

This structure will allow users to write applications in terms of abstract functions,
while the system handles cryptographic translation and optimization.

In Section 3 of this paper, we present a curated selection of FHE components developed
and submitted through the FHERMA challenges platform. These components span
both elementary and compound operations, reflecting current priorities and challenges in
encrypted computation.

1.4 Objectives and Design Considerations
To make the structure explained in the section above usable in practice, our goal is

to enable application developers to express computations entirely at the level of abstract
reusable components, without manually managing encryption parameters, noise growth,
or bootstrapping. The component library is designed for integration into higher-level
toolchains and DSLs, allowing FHE applications to be written in a modular and declarative
style.

For example, a neural network for privacy-preserving inference can be expressed over
encrypted inputs using a standard activation component from the library. As shown in
Listing 1, the developer works with encrypted types and high-level logic (relu), while the
compiler and backend resolve the component call into a concrete FHE circuit.

Listing 1: Encrypted neuron with ReLU activation
fn neuron(inputs: [secret<i32>; N], weights: [secret<i32>; N], bias: secret<i32>)

-> secret<i32> {
let mut acc = bias;
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for i in 0..N {
acc = acc + inputs[i] * weights[i];
}
return polycircuit::relu(acc);
}

This style of usage illustrates the long-term objective of the library: to serve not only
as a set of benchmarkable components, but as the foundation for high-level programming
with encrypted data. Components are intended to be reused and composed within larger
pipelines, such as machine learning inference or private analytics, without modifying their
internal implementation.

To support this, the library will provide language-agnostic interfaces and is designed for
integration with compiler frameworks such as HEIR, EVA, or custom MLIR-based compilers.
Its role within the Component layer complements existing efforts at the Cryptography and
Developer Interface levels, forming part of a full-stack FHE development ecosystem.

2 Overview of the FHERMA Platform
The FHERMA platform is designed to accelerate the development of practical Fully

Homomorphic Encryption (FHE) applications by supporting the creation of an open-source
library of reusable components. The platform provides a structured environment for
evaluating FHE-based algorithms through formalized challenges. Its primary focus is
on use cases in machine learning and blockchain, where FHE can offer strong privacy
guarantees.

FHERMA supports both black box and white box challenges. In black box challenges,
participants submit only the encrypted outputs of their algorithms; the platform evaluates
these ciphertexts for correctness and efficiency without requiring access to the underlying
implementation. This allows developers to preserve the confidentiality of their methods.
In white box challenges, participants submit source code for performance evaluation in a
confidential manner.

The platform supports multiple homomorphic encryption schemes, including CKKS[12],
BFV[15], BGV[9], DM/FHEW [14], and CGGI/TFHE[13] . In addition, it offers flexibility
in cases where the most appropriate scheme is not obvious, allowing challenge designers to
leave the choice of scheme to participants.

FHERMA is compatible with a range of FHE libraries and toolkits, such as OpenFHE[4],
Lattigo[18], HELayers[1], and Apple’s FHE library. This broad compatibility enables
participants to use their preferred development stacks.

Evaluation is performed in an automated and transparent manner. Solutions are tested
against a comprehensive set of test cases, and rankings are updated in real time on a
dynamic leaderboard. At the conclusion of each challenge, all encrypted inputs and secret
keys are published, allowing independent verification of results.

The platform is continuously updated based on community feedback and ongoing
research. It aims not only to address technical challenges but also to build a collabora-
tive ecosystem. By engaging academic and industry contributors, FHERMA facilitates
knowledge exchange and drives innovation in privacy-preserving computation.

3 FHE Components Library
The FHE Components Library is a structured collection of reusable building blocks

designed to facilitate the development of applications based on fully homomorphic encryp-
tion (FHE). The library consists of a growing set of components, each encapsulating a
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specific operation or algorithmic primitive, implemented in a way that is compatible with
practical FHE schemes.

To enhance clarity and reusability, the components are organized into functional groups.
These include, for example, logical and bitwise operations, nonlinear approximations, linear
algebra routines, and data manipulation primitives. This modular structure is intended to
reflect the recurring patterns found in privacy-preserving computations and to support the
composition of complex algorithms from verified, well-understood parts.

The library is released under a permissive open-source license, with the goal of support-
ing the broad adoption and practical deployment of FHE-based solutions. By providing
standard, tested implementations of common computational tasks, the FHE Components
Library aims to lower the entry barrier for developers, reduce duplication of effort, and
enable a more rapid translation of theoretical advances in homomorphic encryption into
usable software systems.

The components are intended to be extensible and adaptable to different FHE backends
and parameter settings, and contributions from the community are actively encouraged.

Each of these components, when described independently, specifies some concrete
encryption parameters. Nevertheless, in the context of a larger application, different
parameters (under some restrictions) can be used.

3.1 Logical and Bitwise Operations

3.1.1 Sign

This component calculates the sign elementwise on an encrypted vector of real numbers,
using the OpenFHE library. The goal is to take an encrypted input vector A = [x1, . . . , xn],
where each xi ∈ [−1, 1], and return an encrypted vector containing the sign of each element.
In FHE schemes such as CKKS[12], BGV[9], BFV[15], where discontinuous functions
cannot be evaluated directly, polynomial approximations are essential for comparison and
max-pooling operations in privacy-preserving ML.

Specification

• Input:

– single packed ciphertext containing the input vector of 212 slots

– cryptocontext

– public key

– multiplication key

• Output

– encrypted vector sign(x)

• Encryption parameters:

– Number of slots: 212 = 4096

– Multiplication depth: 10

– Fractional part precision (ScaleModSize): 50 bits
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Algorithm overview

Since the sign function is not polynomial, it should be approximated by Chebyshev
polynomials to tailor it to encrypted arithmetic operations. The greater the degree of
the polynomial, the more accurate the approximation, but the degree is limited by the
multiplicative depth.

Series Evaluation. A multiplicative depth of 10 allows the Chebyshev series to be
evaluated only up to the 1026-th coefficient. So, a first step is to precalculate the first
1026 coefficients:

coeff_1026 = numpy.polynomial.chebyshev.chebinterpolate(numpy.sign,1026)

The accuracy of a polynomial approximation is rigorously evaluated by its ability to
replicate the true function’s behavior over a specified domain. In this context, accuracy is
quantified by comparing the polynomial’s predictions against a validation dataset, typically
measured by the percentage of correctly predicted signs (positive or negative) of the
function’s output. The accuracy of this polynomial is 99.96%, meaning it correctly predicts
the sign of the output in 99.96% of the validation test cases.

Depth Optimization via Recursion. High-degree Chebyshev terms are recursively
broken down using the identity:

Tm = 2 · Ti · Tj − Tk

until intermediate terms can be safely multiplied at reduced depth.
For example, for T1009:

c× T1009 → 2c× T512 × T497 − c× T15 → T512 × (2c× T497)− c× T15 (1)
2c× T497 → 4c× T256 × T241 − 2c× T15 → T256 × (4c× T241)− 2c× T15 (2)
4c× T241 → 8c× T128 × T113 − 4c× T15 → T128 × (8c× T113)− 4c× T15 (3)
8c× T113 → 16c× T64 × T49 − 8c× T15 → T64 × (16c× T49)− 8c× T15 (4)
16c× T49 → 32c× T32 × T17 − 16c× T15 → T32 × (32c× T17)− 16c× T15 (5)
32c× T17 → 64c× T16 × T1 − 32c× T15 → T16 × (64c× T1)− 32c× T15 (6)

Upon the initial breakdown of T1009, we observed that the series terms to be multiplied
(T512, T497) were at the same depth of nine. Unfortunately, this configuration made it
impossible to perform a third multiplication with the coefficient c. Therefore, we recursively
broke down the expression until we achieved terms (T16, T1) at different depths (4,1). At
this stage, we can multiply c with T1, bringing it to a depth of one. Subsequently, we can
proceed to compute upwards the recursive breakdown to obtain c× T1009.

Coefficient Pruning. Since the sign function is an odd function, the even degree
coefficients (T2i) do not contribute to its approximation. Hence, only odd Chebyshev terms
(T2i+1) are evaluated.

Polynomial Composition. The same methodology is applied to evaluate all the
remaining Chebyshev series coefficients - T1011, T1013, T1015, T1017, T1019, T1021, and T1023.
It is crucial to note that the recursion must be further broken down to evaluate higher
degree coefficients. This additional evaluation increases accuracy from 99.96% to 99.97%.

Example Use Cases
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In general, having the ability of calculating sign means enabling comparison or max
operations:

comp(a, b) = sign(a− b) + 1
2 (7)

max(a, b) = (a+ b) + (a− b)sign(a− b)
2 (8)

In various applications in ML, the sign function serves as a foundational element for
non-linear activation functions like the Rectified Linear Unit (ReLU) or Max Pooling.

3.1.2 Parity

The function parity(x) gets an integer and returns its least significant bit (LSB). In
other words, parity(x) = x mod 2, where x ∈ Z.

Specification

• Input:

– encrypted vector x = (x1, ...), where xi ∈ [0, 255]
– cryptocontext
– public key
– multiplication key

• Output

– an encrypted vector parity(x) = (parity(x1), ...)

• Encryption parameters:

– Number of slots: 216

– Multiplication depth: 29
– Fractional part precision (ScaleModSize): 59 bits
– First Module Size: 60 bits

Algorithm overview

The core idea is to approximate the parity function parity(x) = x mod 2 using a
trigonometric function with Chebyshev polynomials. Evaluating trigonometric functions
in an encrypted domain is a well-established problem, which is frequently employed in
the bootstrapping process to refresh the level count of an “exhausted” ciphertext [7]. We
refined this polynomial approximation using a modified Arnoldi method as introduced in
[10].

1. Problem Transformation. Convert the discrete parity function parity(x) = x
mod 2 to continuous domain through trigonometric formulation f(x) = 1

2 (cos(π(x+
1)) + 1). Normalize input space using y = x−128

128 to work in [−1, 1], yielding
transformed target f(y) = 1

2 (cos(128πy + π) + 1).

2. Initial Polynomial Approximation. Approximate cos(πy + π
128 ) using the 8th-

degree Chebyshev polynomial p(y) via numpy.polyfit. Figure 1 shows an illustration
of such approximation using a polynomial of degree 8.
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Figure 2: (left) Approximation of cos(πy + π
128 ) using an 8th-degree

polynomial. (right) Absolute error of the approximation.

3. Double-angle formula. Now we have to apply double-angle formula h(z) = 2z2− 1
iteratively 7 times to calculate h7 ◦ p(y), which approximates g(y) = cos(128πy + π).
But there is an initial maximum error of > 0.01 observed at critical values (0, 126-128,
255-256).

Figure 3: (top) Approximation of cos(128πy + π) after 7 double angle
iterations. (bottom) Absolute error of the approximation.

4. Iterative Error Refinement. To address this issue, we implemented a modified
Arnoldi method [2] with weight updates: w ← w · |(h7 ◦ p)(y)− g(y)|, where g(y) =
cos(128πy + π). After 5 iterations, the maximum approximation error reduced to
below < 3× 10−4

Figure 4: (top) The final approximation. (bottom) Absolute error of
the approximation.

5. Symmetry Optimization. Exploit even functions’ property of cos(πy) to eliminate
odd-degree terms in Chebyshev expansion. Obtain simplified coefficients: instead
of directly approximating cos(πy + π

128 ), we approximate p(y) ≈ cos(πy) using
the same method and then evaluate p(y + π

128 ) ) to obtain cos(πy + π
128 ). Since
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cos(πy) is an even function, its Chebyshev representation contains only even-degree
terms, allowing us to omit the odd-degree terms for faster evaluation. The updated
Chebyshev representation of p is as follows.

[-0.3042513777371315, 0, -0.970882602838183, 0,
0.30291864798067064, 0, -0.02911740974995488, 0,
0.0013327077835582305]

6. Coefficient Scaling. Our target function is f(y) = 1
2 (cos(128πy + π) + 1), so the

approximation of cos(128πy + π) must be scaled by 1
2 , which would incur an extra

multiplication level.
To avoid this, we scale the coefficients of p by a = 2

27√
4

to approximate a cos(πy).

We then apply a series of transformations hi(y) = y2 − 2 ∗ (a
2 )2i to calculate

(h7 ◦ · · · ◦ h1 ◦ p)
(
y + π

128
)
≈ 1

2 cos(128πy + π).

7. Final Composition. The final approximation of f(y) is obtained by adding 1
2 to

the resulting value. The multiplication depth of the whole computation is 12: 1 for
evaluating y, 4 for evaluating p(y) and 7 for the transformations h1, . . . , h7.

3.1.3 Shift

The Shift Left (SHL) opcode in the Ethereum Virtual Machine (EVM) performs a
bitwise shift left operation on an integer value. This operation is used to shift the bits of
an integer to the left by a specified number of positions, effectively multiplying the number
by 2n, where n is the number of positions shifted.

Specification

• Input:

– encrypted value x ∈ [0, 216 − 1]
– encrypted value n ∈ [0, 16] is a number of shifted bits
– cryptocontext
– public key
– multiplication key
– rotation key for indexes [1, -1, 2, -2, 3, -3, 4, -4, 5, -5]

• Output:

– The first slot should contain the value y = SHL(x, n) = x << n which is equal
to x ∗ 2n.

• Encryption parameters:

– Number of slots: 216

– Multiplication depth: 29
– Fractional part precision (ScaleModSize): 59 bits
– First Module Size: 60 bits
– Bootstrapping: used
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Algorithm overview

The proposed solution employs a two-way lookup table approach, using x and n as
keys and SHL(x, n) as the lookup value. In this way, the computation in the encrypted
domain is expressed as:

SHL(cx, cn) =
216−1∑

i=0

(
EQ(cx, i)×

15∑
k=0

EQ(cn, k)× SHL(i, k)
)
,

where

EQ(a, b) =
{

1 if a = b,

0 if a ̸= b,

is the equality function.

1. Preprocessing (Performed Once). Generate a plaintext vector pin = [0, 1, . . . , 216−
1] representing all possible input values. For each shift amount k ∈ [0, 15], precom-
pute a plaintext vector pout

k = [SHL(0, k),SHL(1, k), . . . ,SHL(216 − 1, k)] containing
the corresponding shifted outputs. Also generate a shift vector pshift = [0, 1, . . . , 15]
to support shift amount comparisons.

2. Slot Duplication. Replicate the encrypted values cx and cn across all slots to
obtain Duplicate(cx) and Duplicate(cn), which have the original values copied into
all 216 slots.

3. Outer Equality Check (match x). Compute the ciphertext difference cdiff =
Duplicate(cx)− pin, where pin is a plaintext encoding of all possible x values.
Raise cdiff to the power 3 · 218 using Fermat’s Little Theorem to get

ceq_x = 1− c3·218

diff ,

which results in a ciphertext with 1 in the slot corresponding to x and 0 elsewhere.

4. Inner Equality Check (match n). Compute the ciphertext difference cdiff_n =
Duplicate(cn)− pshift, where pshift is a plaintext vector encoding all shift amounts
from 0 to 15.
Evaluate a single Lagrange polynomial p(z) over cdiff_n to get ceq_n_vec = p(cdiff_n),
which yields a ciphertext vector with 1 in the slot corresponding to n and 0 elsewhere.

5. Generate Masked Output. For each k ∈ [0, 15], extract the k-th slot value from
ceq_n_vec, broadcast it across all slots to get a mask ciphertext maskk, and compute
the product maskk · pout

k .

6. Weighted Sum of Outputs. Sum all products from previous step to get csum =∑15
k=0 maskk · pout

k , which holds the correct output in the slot indexed by x.

7. Apply Outer Equality Mask. Multiply ceq_x with csum to isolate the result, and
apply SumSlots(·) to move the correct value to the first slot.

8. Depth Optimization. To avoid additional multiplicative depth, reorder the com-
putation as csum − c219

diff · (c218

diff · csum), achieving the same result with total depth
20.

9. Output: The final ciphertext contains the encrypted result of (x× 2n) mod 216 in
its first slot.
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Example Use Case:

• Privacy-Preserving Image Processing: encrypted pixel values can be scaled (e.g.,
brightness adjustment) using shift-left operations without decrypting the image,
ensuring user privacy.

• Secure Machine Learning Inference: neural network layers that involve scaling integer
weights or activations can use shift-left within encrypted computation, supporting
private inference on user data.

3.2 Activation and Approximate Nonlinear Functions
3.2.1 Logistic function

The sigmoid function cannot be readily expressed as a polynomial, therefore, it is
crucial to investigate to what extent we can approximate the logistic function under the
constraint of a limited multiplicative depth.

Specification

• Input:

– encrypted vector A of size 2048, where each element of vector is in range
[−25, 25]

– cryptocontext
– public key
– multiplication key
– rotation key for indexes [1, -1, 2, -2]

• Output:

– a cipher representing sigmoid(A)

• Encryption parameters:

– Number of slots: 211

– Multiplication depth: 7 / 4 in different cases
– Fractional part precision (ScaleModSize): 50 bits
– Ring Dimension: 32768 / 16384 in different cases

Algorithm overview

The approach is very similar to the approach used in sign function. As previously
mentioned, one common method for approximating the logistic function involves employing
the Chebyshev series. However, the Chebyshev series provides results in the domain [-1, 1].
To apply the Chebyshev series to broader ranges (e.g., [a, b]), the input polynomial (e.g.,
x) is scaled to bring it to the interval [-1,1] as described below, ensuring the applicability
of the Chebyshev approximation.

x′ = 2x− (b+ a)
b− a

x′ = x

ω
where |a| = |b|, a ̸= b, and ω = |b|

However, note that this scaling results in the loss of one multiplicative depth.
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1. Test case #1:
With OpenFHE’s ChebyshevPS implementation, we find that we can evaluate the
Chebyshev series up to the coefficient 59 using the restricted depth. Applying the
SIGN challenge strategy can extend this evaluation to 63 coefficients, resulting in an
accuracy of 99.99. To walk the extra mile (or 0.01) for achieving complete accuracy,
let’s delve into the recursive unroll of T65 as outlined below:

c× T65 → 2c× T32 × T33 − c× T1 → T32 × (2c× T33)− c× T1 (9)
2c× T33 → 4c× T16 × T17 − 2c× T1 → T16 × (4c× T17)− 2c× T1 (10)
4c× T17 → 8c× T8 × T9 − 4c× T1 → T8 × (8c× T9)− 4c× T1 (11)
8c× T9 → 16c× T4 × T5 − 8c× T1 → T4 × (16c× T5)− 8c× T1 (12)

16c× T5 → 32c× T2 × T3 − 16c× T1 → T2 × (32c× T3)− 16c× T1 (13)

T2 and T3 can be represented as follows:

T2 → 2x′2 − 1 // Multiplicative depth 2
c× T3 → 4cx′3 − 3cx′ // Multiplicative depth 3

The computation of T65 relies on our ability to compute 32c× T3, so

32c× T3 →
128c
ω3 x3 − 96cx′ →

(
128c
ω3 x

)
(x2)− 96cx′ // Multiplicative depth 2

The logistic function is an odd function, and only the odd coefficients of the Chebyshev
series contribute to its approximation. Leveraging recursive breakdowns like the one
for T65, we calculate odd series coefficients up to T77, almost achieving our target of
a 100 (99.9988) accuracy for this particular test case.

2. Test case #2:
In this test case requiring multiplicative depth 4, the direct Chebyshev series com-
putation to coefficient 7 achieved only 88.12% accuracy (below the 90% threshold).
This necessitates converting the Chebyshev computation to polynomial evaluation to
investigate the technique’s limitations.
Coefficients for degree 16: {0.5, 0.19, 0.0,−0.004, 0.0, 4.83×10−05, 0.0,−2.97×10−07, 0.0, 1.02×
10−09, 0.0,−1.94× 10−12, 0.0, 1.94× 10−15, 0.0,−7.89× 10−19, 0.0}, showing progres-
sive decay due to scaling factor concentration.
Initial evaluation to x7:

SUM7 = (c7x
4)x3 + (c5x

3)x2 + (c3x
2)x+ c1x+ c0

For higher terms (x9 to x13), we use chunked computation:

y1 = 10−3x2 (depth 2)
y2 = c9106x2 (depth 2)

c9x
9 = (y2

1)(y2x
3)

Extending to x13 (maximum for 2 constant multiplications):

y1 = 10−6x3

y2 = c131012x3

c13x
13 = (y2

1)(y2x
4)

This improved accuracy from 88.12% to 96.6%, demonstrating the method’s effec-
tiveness within depth constraints. Further investigation of this approach for other
approximating functions appears warranted.
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3.2.2 ReLU function

The ReLU function is defined mathematically as: ReLU(x) = max(0, x)

Specification

• Input:

– encrypted vector X of size 16384, where each element is in range [−1, 1]
– cryptocontext
– public key
– multiplication key

• Output

– an encrypted vector ReLU(x)

• Encryption parameters:

– Number of slots: 214

– Multiplication depth: 12 / 4
– Fractional part precision (ScaleModSize): 48 bits
– Ring dimension: 32768

Algorithm overview

A natural way to solve a problem is to use OpenFHE’s built-in Chebyshev approximation.
Here we face multiplicative depth constraints: Testcase 1 allows d = 29 (supporting
polynomials up to order n = 229 − 1), while Testcase 2 restricts to d = 4 (max order
n = 15).

1. Testcase 1 Implementation. Using OpenFHE’s built-in Chebyshev approximation
with n = 1000, we achieve 100% accuracy on [−1, 1] through high-degree polynomial
fitting (n ≈ 5.4× 108 theoretically supported).

2. Testcase 2 Challenges. The limited n = 15 polynomial from standard Chebyshev
approximation yields only 63% accuracy, necessitating optimization strategies.
The chosen optimization strategy has two key improvements:

(a) Formulate outlier-aware regression minimizing samples where |p(xi)| > ϵ (ϵ =
10−3) over regular grid xi ∈ [−1, 1]

(b) Extend maximum order to n = 16 by requiring integer leading coefficient an,
enabling xn term computation through repeated additions instead of depth-
consuming multiplications.

Encode constraints via Mixed-Integer Linear Programming (MILP) with MOSEK [22],
combining outlier minimization and integer coefficient requirements for depth optimization.
The optimized 16th-order polynomial is:

p(x) =0.0324 + 0.5x+ 2.1348x2 − 13.9209x4 + 70.0983x6

− 213.0967x8 + 385.9436x10 − 407.0473x12

+ 230.3549x14 − 54x16

This strategy achieves 88.4% accuracy for Testcase 2, demonstrating 25.4% improvement
over the baseline while respecting multiplicative depth constraints.
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3.3 Linear Algebra Components
3.3.1 Matrix Multiplication

Specification

• Input:

– two encrypted matrices A, B of size 64 x 64, where each element of matrices is
in range [−1, 1]

– cryptocontext
– public key
– multiplication key
– rotation key for indexes [1, -1, 2, -2, 3, -3, 4, -4, 5, -5]

• Output

– a cipher representing A×B

• Encryption parameters:

– Batch size: 212

– Multiplication depth: 2
– Fractional part precision (ScaleModSize): 50 bits

Algorithm overview

Existing encrypted matrix multiplication techniques fall into three main categories:

• Row-wise Encoding: Simple and general, requiring 2d multiplications and 2d +
3log2d − 2 rotations for a d×d matrix. However, it demands d2 ciphertext slots,
making it unsuitable for large matrices or limited slot scenarios.

• Diagonal-based: Requires more packing (d3 slots) but can be optimized to d +
2
√
d operations. Requires for multiplicative depth of 3, lowering to 2 increases

rotations/multiplications significantly.

• Multivariate CKKS (m-RLWE): Encodes matrices in a hypercube, enabling efficient
rotations and depth-2 multiplication. However, it’s incompatible with standard
CKKS, and its security and parameterization remain unresolved.

Due to initial constraints (depth=2, row-wise encoding), only the first method is
adaptable. The number of slots (8192) don’t support d3 (for d=64), so direct use isn’t
feasible. We first explore adapting this technique [24] from this work to our case. It utilizes
column and row masks. The complexity of this adaptation is 2d+ 2d ∗ log2d− 1 rotations
and d ct-ct multiplications.

1. Column-wise preprocessing of matrix A:

• For each column index i ∈ {0, 1, . . . , d− 1}:
(a) Construct the plaintext mask πi that selects the i-th column.
(b) Compute Ãi = A · πi.
(c) Right align all the columns: Ãi ← Rot(Ãi,−i).
(d) For each k ∈ {0, 1, . . . , log2 d− 1}:

– Update: Ãi ← Ãi + Rot(Ãi,−2k).
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2. Row-wise preprocessing of matrix B:

• For each row index i ∈ {0, 1, . . . , d− 1}:
(a) Construct the plaintext mask ψi that selects the i-th row.
(b) Compute B̃i = B · ψi

(c) Top align all the rows: B̃i ← Rot(B̃i,−i ∗ d).
(d) For each k ∈ {0, 1, . . . , ⌊log2 d⌋ − 1}:

– Update: B̃i ← B̃i + Rot(B̃i,−2k · d).

3. Matrix product computation:

• Compute the encrypted matrix product as:

C =
d−1∑
i=0

Ãi · B̃i

To optimize this algorithm, we explore a strategy involving the initial packing of
duplicate copies of the original ciphertext, one original and one rotated. The proposed
Algorithm 2 presents this approach, where both ciphertexts A and B undergo pre-processing.
Following this packing strategy, only d + log22d + 1rotations and d

2 multiplications are
required for the subsequent steps.

1. Column-wise preprocessing of matrix A:

• A+ = Rot(A,−d2 + 1).
• For each column index i ∈ {0, 1, . . . , d

2 − 1}:

(a) Compute Ãi = A · πi,i+d2

(b) Right align all the columns: Ãi ← Rot(Ãi,−2 ∗ i).
(c) For each k ∈ {0, 1, . . . , log2 d− 1}:

– Update: Ãi ← Ãi + Rot(Ãi,−2k).

2. Row-wise preprocessing of matrix B:

• B+ = Rot(B,−d2 + d).
• For each row index i ∈ {0, 1, . . . , d

2 − 1}:

(a) Compute B̃i = B · ψi,i+d2

(b) Top align all the rows: B̃i ← Rot(B̃i,−2i ∗ d).
(c) For each k ∈ {0, 1, . . . , log2 d− 1}:

– Update: B̃i+ = B̃i + Rot(B̃i,−2k · d).

3. Matrix product computation:

• Compute the encrypted matrix product as:

C =
d
2 −1∑
i=0

Ãi · B̃i

• C+ = Rot(c, d2)
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Additionally, this algorithm exhibits high parallelism. Hence, employing ’pragma omp
parallel’ before the for loops can help leverage the capabilities of modern multithreaded
operating systems, leading to excellent performance. It is important to highlight that the
proposed approach is tailored to the constraints of the FHERMA challenge, considering
the available packing 2d2 for matrix dimension d. Notably, the scalability of this approach
improves with higher packing availability. It outperforms all existing methods [23],[17] for
d3 slot-packing by consuming only O(log2d) rotations while still requiring a multiplicative
depth of two. The proposed algorithm is characterized by its simplicity, yet it achieves
non-trivial results, particularly when applied to higher packing scenarios. Its effectiveness
lies in improving the best-case outcomes.

3.3.2 Invertible Matrix

Invert a nonsingular matrix under Homomorphic Encryption (HE) constraints, targeting
completion within ∼30 minutes. There was no pre-selected multiplicative depth in this
challenge.

Specification

• Input:

– encrypted matrices A of size 64 x 64, row-packed, where each element of matrices
is in range [−1, 1]

– cryptocontext
– public key
– multiplication key

• Output

– a cipher representing the result of inverting a matrix A, i.e. A−1

• Encryption parameters:

– Number of slots: 212

Algorithm overview

The core idea is an iterative algorithm proposed in [3], which combines Goldschmidt’s
and Newton’s methods. This hybrid approach is ideal for HE, as it maintains a low
multiplicative depth—a critical factor given the substantial overhead introduced by each
ciphertext multiplication.
In this work, we adopt the tile tensor abstraction introduced in [2] and IBM HELayer
SDK [16], owing to its clarity and implementation ease. For a detailed introduction to tile
tensors and the set of operations supported on this data structure, please refer to [2].

1. Preprocessing. The input ciphertext matrix A ∈ R64×64 is encoded as a tile tensor
with shape A[ 1

t1
, 64

t2
, 64

t3
], using tiling parameters t1 = t2 = 64, t3 = 32. We fix a

normalization constant normA = 24.

2. Compute Initial Values. Transpose A to obtain A⊤[ 64
t1
, 64

t2
, 1

t3
] using tile ten-

sor transposition as in [2]. Duplicate A and A⊤ along appropriate axes to align
dimensions for multiplication. Multiply and sum to compute AA⊤[ 64

t1
, 1?

t2
, 64

t3
],

then apply the clear operation to get AA⊤[ 64
t1
, 1

t2
, 64

t3
]. Compute residual ma-

trix R = I − AA⊤/normA. Compute the initial approximation of the inverse as
X = A⊤/norm2

A.
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3. Precompute Encodings for R. Generate three encodings of R to avoid transposi-
tions in the loop: R1[ 1

t1
, 64

t2
, 64

t3
], R2[ 64

t1
, 1

t2
, 64

t3
], and R3[ 64

t1
, 64

t2
, 1

t3
].

4. Iterative Refinement Loop. Repeat the following for 26 iterations: Update
X ← X(I + R2) using matrix multiplication with compatible shapes. Update
R1 ← sum(R2 ·R3, axis = 1). Rotate encodings similarly to update R2 and R3. Each
iteration has multiplicative depth 2, due to two matrix multiplications.

5. Finalization. Reshape the final X tensor to match the expected output format.
Critical optimizations:

• Precompute all Ri encodings before iteration loop
• Reuse encodings for R2 calculation
• Limit to 2 multiplicative levels per iteration

The total multiplicative depth of the algorithm:

26× 2 + 1 (initial scaling) + 4 (precomputing Ri) + 4 (reshaping) = 61.

3.3.3 Lookup table

A lookup table (LUT) is a data structure used to store precomputed values that can
be quickly retrieved using an index. This enables constant-time access to data, making
LUTs a powerful tool for optimizing performance in algorithm design and implementation.

Specification

• Input:

– encrypted vector A of size 2048, where each element is an integer in range
[0, 255]

– encrypted index i such as i ∈ [0, 2047]
– cryptocontext
– public key
– multiplication key

• Output

– an encrypted value of the element Ai

• Encryption parameters:

– Encryption scheme: BGV/BFV
– Number of slots: 211

– Ring dimension: 65537

Algorithm overview

The algorithm can be divided into three main steps:

1. Rotations. Since we use packing, the encrypted index vector has the following form:
[i, 0, 0, ...0]. We start by rotating this vector by -2047, resulting in a [0, 0, ...0, i]. By
applying 11 rotations and additions (using rotation keys 1, 2, 4, 8, ..., 1024), we
obtain a new encrypted vector c1 = i, i, ...i with i in the first 2048 slots. We need 12
rotation keys in total by reusing them.
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2. Creating mask. We calculate c2 = c1 + [0,−1,−2, ...− 2047]. This new ciphertext
c2 has exactly one zero at the i-th slot, with non-zero values in every other slot. By
Fermat’s Little Theorem, and because operations are performed modulo 65537 =
216 + 1, for all x ∈ [1, 65536] x216 = 1. We exponentiate each value of c2 to 216 using
fast exponentiation and 16 multiplications. The result is c3, a ciphertext containing
ones in all 2048 slots except for i-th slot, since 065536 = 0.
Then c4 = [1, 1, ...1]− c3 = [0, 0...1, 0...0].

3. Rotate back. c5 = c4 ×A = [0, 0, ...xi, 0...0]. We apply to c5 the strategy from first
step of 11 rotations and additions (with the same rotation keys) to bring xi to the
first slot.

3.4 Data Manipulation Primitives
3.4.1 Array sorting

This component performs sorting on an encrypted vector of real numbers, using the
OpenFHE library. The goal is to take an encrypted input vector A = [x1, . . . , xn], where
each xi ∈ [0, 255], and return an encrypted vector containing the same elements in ascending
order - all without decrypting the data. The computation is done entirely over encrypted
values using SIMD packing and polynomial approximations to emulate comparison and
permutation operations.

Specification

• Input:

– single packed ciphertext containing the input vector 215 slots
– cryptocontext
– public key
– multiplication key

• Output

– encrypted sorted vector

• Encryption parameters:

– Number of slots: 216

– Multiplication depth: 29
– Fractional part precision (ScaleModSize): 59 bits
– First Module Size: 60 bits

Algorithm overview

The execution flow comprises two main steps:

1. Index Calculation. For each value in the array, we determine its target index by
counting the number of smaller values. This involves pairwise comparisons of all
elements of the array. To facilitate these comparisons, the current value is subtracted
from every other value, and the result is passed through an approximated sign
function. These pairwise comparisons are performed simultaneously in SIMD fashion
within a single packed ciphertext containing 215 = 32768 slots. This process requires
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several rotations to duplicate values across the ciphertext slots. Figure 1 illustrates
the computation of target indices.

Figure 5: A toy example illustrating the computation of sorted indices
for an input array of size 4.

To perform the comparison, we approximate the sign function using a composite
polynomial approach as described in [19]. Specifically, three polynomials of degree
63 are used to approximate the function within the range [−255,−0.01] ∪ [0.01, 255]
to satisfy the challenge requirements. Figure 2 shows the approximation, with a
maximum absolute error below 0.0001. Polynomial evaluations are made using the
baby step giant step (BSGS) algorithm [7] to optimize level consumption. The
comparison circuit utilizes 19 levels in total (1 + 3⌈log2 63⌉), including an additional
level for input value scaling. After applying the comparison function, rotation and
summation operations are performed to accumulate results and compute the target
indices (Figure 1).

Figure 6: Approximation of the sign function using a composition of
three polynomials p1, p2, p3 of degree 63.

2. Permutation: A permutation matrix is derived based on the computed indices, as
demonstrated in Figure 6. This process requires an approximated equality-checking
function, which is constructed as a composition of two polynomials with degrees
59 and 62, as shown in Figure 7. The array is then rearranged into sorted order
using vector-matrix multiplication with the permutation matrix. This step consumes
a total of 14 levels, obtained by (⌈log2 59⌉ + ⌈log2 62⌉ + 2), where the additional
two levels account for multiplication with the permutation matrix and a masking
operation.
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Figure 7: Computation of the permutation matrix from the indices,
followed by the rearrangement of array elements into sorted order.

Figure 8: Approximation of the equality checking function using a
composition of three polynomials p4, p5 of degree 59 and 62

3.4.2 Max element

The objective of the challenge is to find a maximum value in a vector encrypted under
BFV.

Specification

• Input:

– encrypted vector A of size 2048, where each element is in range [0, 255]
– cryptocontext
– public key
– multiplication key

• Output

– a ciphertext with maximum value

• Encryption parameters:

– Number of slots: 211

– Ring dimension: 16384
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Algorithm overview

1. Comparison. We use Lagrange interpolation to construct a polynomial that acts

as a step function: fi(x) =
{

1 if x ≥ i
0 otherwise

2. Threshold iteration. Iterate over threshold values i = 1 to m = 255. For each i,
we evaluate whether each encrypted array element is greater than or equal to i, so
for each i there is an array of 0 and 1 (1 if xi ≥ i, 0 otherwise.)

3. Homomorphic NAND. For each array obtained from the previous step we calculate
if there’s any 1 in this array: 1 if yes, no otherwise

def NAND(y, n):
z = 1 - y
r = 1
while r < n:

z = z * (z << r)
r *= 2

z = 1 - z
return z

4. Answer. The maximum element is the sum of all NAND function results from
previous step. The whole function pseudocode is

def max(x, m=256):
sum = 0
for i in range(1, m):

y = (x >= i)
if np.any(y):

sum += 1
return sum

5. SIMD Parallelization. Since n = 2048 is smaller than half the ring dimension
(16384), we can duplicate the encrypted array across the available slots and process
different thresholds (i) in parallel. The polynomial coefficients for each threshold are
encoded as plaintext vectors, and ciphertext-plaintext multiplications are used to
evaluate the different polynomials.

Example Use Case:

• In audio or sensor signals, finding the maximum amplitude is crucial for normalization,
peak detection, or thresholding.

• In classification problems (like image recognition), the output layer gives multiple
scores (e.g., for cat, dog, car), and the maximum score determines the predicted
class.

• In max-pooling layers in CNNs (Convolutional Neural Networks), the maximum
value in a region is used to reduce dimensionality while preserving strong signals.
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4 Privacy-Preserving AI Applications
4.1 Image Classification (CIFAR-10)

Image recognition is a key task in machine learning and computer vision, where
models are trained to identify and classify objects or patterns within images. By integrating
fully homomorphic encryption (FHE), image recognition can be applied to sensitive data
without compromising privacy, making it suitable for domains such as medical diagnostics,
biometric identification, and surveillance systems.
In this challenge, the CIFAR-10 dataset is used, comprising 60,000 images distributed
across 10 distinct classes. CIFAR-10 is widely recognized as a benchmark for assessing
the performance of image classification models. Solution accuracy is evaluated as the
percentage of correctly classified images.

• Task: Multiclass classification

• Dataset: CIFAR-10

• Evaluation Metric:

– Accuracy: The percentage of correctly classified images.

• Formal Specification:

– Input: Encrypted vector x = (x1, . . . , x3072), where xi ∈ [0, 255]
– Output: Encrypted vector y = (y1, ..., y10), where the index of the maximum

element indicates the predicted class of the input image.

4.1.1 Solution 1: Encrypted Image Classification Using KAN

• Architecture: Kolmogorov-Arnold Network (KAN)

• Encryption parameters:

– Multiplication depth: 5
– Ring dimension: 8192
– Scale mod size: 25
– First mod size: 30
– Batch size: 4096
– Bootstrapping: unused

• Library: OpenFHE [6]

• Performance:

– Accuracy: 100%
– Average inference time: 0.321 s/image

Model Selection
We experimented with various neural network architectures and eventually decided

to use the Kolmogorov-Arnold Network (KAN) [20]. Compared to traditional multilayer
perceptron networks, KAN requires fewer model parameters and performs well in signal/-
function regression or interpolation tasks, making it well-suited for this challenge. To
enhance evaluation efficiency, we adopted a variant of KAN based on Chebyshev polyno-
mials, known as ChebyKAN [11]. The Chebyshev basis can be efficiently computed using
recursive formulas, thereby reducing computational costs and minimizing ciphertext level
consumption.
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Model Training
We trained a KAN network with a single layer of learnable activation functions. To

optimize runtime, we sought the lowest possible activation degree that could still achieve
100% prediction accuracy. The training code was adapted from a GitHub repository [11].
We successfully trained the model to a degree of 8, which required a multiplication depth of
5: one for normalizing the input vector and four for evaluating the Chebyshev polynomials.

Optimization
Given that the input vector consists of 3,072 elements (from a 32x32 image with three

channels), the minimum ring dimension we could use in the challenge was 8,192, with
up to 4,096 plaintext slots to encrypt the entire input vector. We aimed to work with
this lowest ring dimension to minimize complexity and maximize computation speed. We
observed that the dominant HE operator during inference was the rotation operator, which
necessitates costly key-switching calculations. Theoretically, to compute the sum over a
vector of N elements packed in a single ciphertext, one must perform log2(N) rotations
using the folding technique. With an input dimension of 3,072 and an output dimension
of 10 classes, the first layer’s forward pass (calculating 10 different summations for the 10
classes) would require at least ⌈log2(3, 072)⌉+ 101 = 21 rotations at a ring dimension of
8,192. To reduce this number and expedite the inference process, our idea is to infer the
probability for each output class based on subsampled portions of the input image.

Specifically, the output probability for the i-th class was computed from pixels located
at indices i+ 10j where j = 0, 1, . . . , 306, in the flattened input vector, as illustrated in
Figure 9. In this manner, the output probability of a class can be viewed as a function
interpolation task over approximately 307 pixels of the input image. Calculating the sum
over these subsets of evenly-spaced pixels can be optimally achieved using ⌈log2(307)⌉ = 9
rotations in total.

Figure 9: Pixel selection for efficient class probability computation.

However, reducing the number of input dimensions also decreases accuracy, potentially
falling below the acceptable threshold. To counteract this, we used multiple fragmented
pixels at different offsets to predict class probabilities. Specifically, the probability for the
i-th class was associated with pixels at positions i+ 10j + offset, with j = 0, 1, . . . , 306
and offset = 0, . . . , noffset (Figure 10). A higher noffset results in higher prediction
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accuracy. By experimentally varying noffset, we selected the lowest value yielding over 85%
accuracy, which was noffset = 3 for the time-oriented track, and the lowest value achieving
100% accuracy, which was noffset = 5 for the accuracy-oriented track. Consequently, the
number of rotation operations required for each track was ⌈log2(3× 307)⌉+ 3− 1 = 12 and
⌈log2(5× 307)⌉+ 5− 1 = 15, respectively. By minimizing the number of required rotations,
our approach significantly accelerates processing speed compared to other solutions that
operate on the full image.

Figure 10: Pixel selection with different offsets noffset = 3 for enhanced
class probability computation.

4.1.2 Solution 2: Encrypted Image Classification Using MLP

• Architecture: Multilayer perceptron (MLP)

• Encryption parameters:

– Multiplication depth: 4
– Ring dimension: 16384
– Scale mod size: 51
– First mod size: 60
– Batch size: 4096
– Bootstrapping: unused

• Library: LattiGo [18]

• Performance:

– Accuracy: 100%
– Average inference time: 0.236 s/image

Model Selection

Initially, we experimented with the ResNet architecture, however, given the nature of
this particular challenge, we opted for a significantly simpler neural network model with
one hidden layer. The chosen neural network model had the following architecture:

• Input Layer: 3072 neurons (corresponding to the 32x32x3 CIFAR-10 images).
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• Hidden Layer: 16 neurons.

• Output Layer: 10 neurons (one for each CIFAR-10 class).

This configuration resulted in approximately 50000 parameters.

Model Training

To achieve 100% accuracy, we trained the model in two phases, each time using a
different activation function to avoid local minimum issues:

1. During the first training phase, we used a cubic activation function to improve
neural network convergence.

2. On the second phase, we continued training with a quadratic activation function.
This allowed us to reduce the multiplication depth and, therefore, speed up the
calculations.

The training was conducted using the PyTorch library. Training with the cubic activation
function took one day, followed by two additional days of training with the quadratic
activation function.

Loss function and optimizer

We utilized cross-entropy as our loss function and the L-BFGS optimizer for training.

• Cross-entropy, also known as logarithmic loss or log loss, is widely used in classifi-
cation problems to measure the performance of a model.

• L-BFGS is a quasi-Newton method that approximates the algorithm of Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) using limited computer memory. It itera-
tively improves an estimate of the inverse Hessian matrix and uses it to compute
search directions.

These choices were made based on their compatibility with the nature of our problem and
demonstrated higher accuracy with faster convergence compared to gradient methods.

Model deployment

The model weights were exported in JSON format for use in the Go solution.

Operations on encrypted data

Given the encrypted nature of the data, certain operations had to be implemented
manually because the EvalSum key had not been generated:

• EvalSum - custom implementation since sum keys were not provided.

• DotProduct - custom implementation of EvalInnerProduct was necessary for
encrypted matrix multiplication.
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Optimizations

Normally, neural networks parallelize well, but Python’s pickle serialization limitations
hindered initial attempts to accelerate computations through parallelism. However, em-
ploying goroutines in Go and the LattiGo library, we managed to speed up execution by
at least three times.

Additionally, we had to fix a few bugs in the code and implement unit, integration,
and performance tests to be able to compare solutions efficiently.

Eventually, we reduced the number of multiplications, adjusted the parameters log_q
and log_n, applied parallelism in Go, and managed to accelerate performance by additional
30%.

Conclusion

While our prototype demonstrates the feasibility of performing inference over encrypted
data, the simplicity of the network architecture may limit its generalization capacity. Initial
results suggest a risk of overfitting to the training data, which can be addressed through
using deeper network, different activation functions and more extensive training.

4.2 Fraud Detection
Fraud detection plays a crucial role in ensuring financial security. FHE enables

sensitive transaction data analysis without ever exposing it, preserving privacy throughout
the process.

Participants are challenged to implement a Support Vector Machine (SVM) - a classic
yet highly effective algorithm for classification tasks. The model must perform inference
directly on encrypted transaction data, accurately determining whether each transaction
is legitimate or fraudulent.

The overall accuracy of each solution is primarily evaluated using the F1 score, with
both precision and recall considered in the final assessment.

• Task: Binary classification

• Dataset: Ethereum Fraud Detection Dataset

• Algorithm: Support Vector Machine (SVM)

• Evaluation Metrics:

– Recall: The proportion of actual fraudulent transactions correctly identified
by the model.

– Precision: The proportion of transactions classified as fraudulent that are
truly fraudulent.

– F1 Score: The harmonic mean of precision and recall, providing a balanced
measure of model performance when both false positives and false negatives are
important.

• Formal Specification:

– Input: Encrypted vector x = (x1, ..., x45)
– Output: Encrypted vector containing the result of transaction evaluations,

where:
∗ -1 represents a legitimate transaction.
∗ 1 represents a fraudulent transaction.
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4.2.1 Solution 1: Fraud Detection via SVM with Linear Kernel

• Encryption parameters:

– Multiplication depth: 26
– Ring dimension: 65536
– Scale mod size: 40
– First mod size: 45
– Batch size: 32768
– Bootstrapping: unused

• Library: OpenFHE [6]

• Performance:

– Accuracy: 91.3%
– Average inference time: 12.761 s/transaction

Data Preprocessing

The public training dataset contains Ethereum transaction features for fraud detection.
We analyzed feature skewness using scipy.stats.skew, revealing high skewness (>1)
across all columns, indicating non-normal distributions.

Column Skewness
0 ERC20 avg val sent 88.696538
1 ERC20 max val sent 88.682094
2 ERC20 min val sent 88.679603
3 ERC20 max val rec 88.631605
4 ERC20 total Ether received 88.608206
...
36 total transactions (including tnx to create co... 6.797555
37 Time Diff between first and last (Mins) 1.802201

High skewness suggests that features are heavily tailed, which can degrade SVM
performance by causing numerical instability or poor separation of classes. Transforming
features to a logarithmic scale reduces skewness, making the data more symmetric and
closer to a normal distribution. This ultimately boosts classification accuracy.

Since the dataset includes negative values, we first apply MinMaxScaler to scale features
to [0, 1], then use a polynomial approximation of the logarithm (poly_log) to enable
HE-compatible evaluation.

scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
X_train = poly_log(X_train)
X_test = poly_log(X_test)

The poly_log function approximates the logarithm over [0.0001, 1] (figure 11) using
Chebyshev interpolation with degree 121 for high precision:

x = np.linspace(0.0001, 1, 10000)
y = np.log(x)
poly_log = C.Chebyshev.fit(x, y, 121)
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Figure 11: Illustration of the log approximation.

After log transformation, we apply a second MinMaxScaler to rescale the data back to
[0, 1].

scaler2 = MinMaxScaler()
X_train = scaler2.fit_transform(X_train)
X_test = scaler2.transform(X_test)

Model Training

We implemented SVM using sklearn.svm.SVC and tune hyperparameters C and gamma
with GridSearchCV.

tuned_parameters = [{ "gamma": [1,0.1,0.01,0.001], "C": [1, 10, 100, 1000]}]
grid = GridSearchCV(SVC(kernel=’linear’), tuned_parameters, refit=True, cv=5,

scoring=’f1’)
grid.fit(X_train, y_train)

We selected the linear kernel for its simplicity and HE compatibility. Non-linear kernels
(e.g., RBF, polynomial) could improve accuracy but introduce significant complexity in HE.
They require evaluating the kernel function over potentially hundreds of support vectors,
involving costly operations like rotations. In contrast, the linear kernel’s decision function
is a single dot product between the input vector and the model’s weights, enabling faster
and more efficient HE inference.

The grid search yields an F1 score of 0.9025 on the training set. Validation on a
separate clear-text test set achieves an F1 score of 0.9161, confirming robust generalization.

print("Train F1 Score :",grid.best_score_)
best_y_pr = grid.predict(X_test)
print(’Test F1 Score: ’, f1_score(y_test, best_y_pr))

Output:
Train F1 Score : 0.9025388783902716
Test F1 Score: 0.9161290322580645

HE Implementation

For HE inference, we use the CKKS scheme to evaluate the trained SVM on encrypted
inputs. The process mirrors preprocessing and model evaluation in the clear-text domain
but operates on ciphertexts.
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First, we apply the MinMaxScaler and poly_log transformation to the input ciphertext:

// Extract attributes from the first MinMaxScaler, where scale_1 = scaler.scale_
and min_1 = scaler.min_

m_OutputC = m_cc->EvalMult(m_OutputC, m_cc->MakeCKKSPackedPlaintext(scale_1));
m_cc->EvalAddInPlace(m_OutputC, m_cc->MakeCKKSPackedPlaintext(min_1));

m_OutputC = m_cc->EvalChebyshevSeries(m_OutputC, poly_cheb, 0.0001, 1);

// Similarly, we have scale_2 = scaler2.scale_ and min_2 = scaler2.min_
// However, this second scaling can be skipped as discussed below
// m_OutputC = m_cc->EvalMult(m_OutputC, m_cc->MakeCKKSPackedPlaintext(scale_2));
// m_cc->EvalAddInPlace(m_OutputC, m_cc->MakeCKKSPackedPlaintext(min_2));

To optimize, we skip the second scaling (scaler2) by fusing it with the SVM weight
multiplication, reducing the multiplication depth. We adjust the model weights and bias
accordingly:

w = grid.best_estimator_.coef_[0]
b = grid.best_estimator_.intercept_[0] + (scaler2.min_ * w).sum()
w = w * scaler2.scale_

The HE evaluation computes the decision function as a dot product:

m_OutputC = m_cc->EvalMult(m_OutputC, m_cc->MakeCKKSPackedPlaintext(w));
int k = 64;
while (k > 1) {

k = k/2;
m_OutputC = m_cc->EvalAdd(m_OutputC, m_cc->EvalRotate(m_OutputC, k));

}
m_OutputC = m_cc->EvalAdd(m_OutputC, b);

This accumulates the dot product result in the first slot of the ciphertext. To obtain
the predicted label, we compute the sign of this value. We scale the first slot to [-1, 1],
mask other slots containing dummy values to avoid overflow, and apply an approximated
sign function using three composite polynomials (each degree 25):

std::vector<double> mask(32768);
mask[0] = 0.01; // Scale to [-1, 1]
m_OutputC = m_cc->EvalMult(m_OutputC, m_cc->MakeCKKSPackedPlaintext(mask));

m_OutputC = m_cc->EvalChebyshevSeries(m_OutputC, sign_poly_1, -1, 1);
m_OutputC = m_cc->EvalChebyshevSeries(m_OutputC, sign_poly_2, -1, 1);
m_OutputC = m_cc->EvalChebyshevSeries(m_OutputC, sign_poly_3, -1, 1);

This produces the final encrypted classification label (1 for fraud, -1 for legitimate).

Conclusion

The solution achieves high accuracy (F1 > 0.91) on the Ethereum fraud detection
task while enabling secure inference on encrypted data with a processing delay of 12.761
seconds per inference. By leveraging a linear SVM, Chebyshev polynomial approximations,
and optimized HE operations, we balance performance and computational efficiency.

4.2.2 Solution 2: Fraud Detection via SVM with RBF Kernel

• Encryption parameters:
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– Multiplication depth: 25
– Ring dimension: 65536
– Batch size: 32768
– Bootstrapping: unused

• Library: OpenFHE [6]

• Performance:

– Accuracy: 90.2%
– Average inference time: 39.378 s/transaction

Data Preprocessing

For fraud detection on Ethereum transactions, a Support Vector Machine (SVM) with
a Radial Basis Function (RBF) kernel was selected due to its superior performance in
capturing complex, non-linear patterns in transaction data. The RBF kernel is defined as:

K(x, xi) = exp
(
−γ∥x− xi∥2)

Optimal Hyperparameters

• Kernel coefficient (gamma): 0.5

• Regularization (C): 1200

• Number of support vectors: 512

This configuration resulted in the highest observed F1-score. Despite the numerous
features and support vectors, the SIMD (Single Instruction, Multiple Data) capabilities of
CKKS homomorphic encryption ensured minimal computational overhead.

Homomorphic Inference
The SVM decision function is computed as:

f(x) = sign
(

n∑
i=1

yi K(x, xi) + b

)

Where:

• The Ethereum transaction feature vector x is encrypted

• Support vectors (xi), dual coeffs (yi) and bias (b) are in clear

Key Challenges & Solutions

• Non-Polynomial Kernel Approximation

– The RBF kernel is non-polynomial and cannot be directly evaluated in CKKS.
– Solution: A polynomial approximation over the interval [−30000, 0] with a

degree-1024 polynomial was employed to ensure high precision.

• Sign Function Approximation
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– The sign function is discontinuous and must be approximated in encrypted
computation.

– Practical approximation: Polynomial approximation of the hyperbolic tan-
gent (tanh) approximation with:

∗ Polynomial Degree: 256
∗ Approximation Interval: [−70, 70]
∗ Sharpness Parameter (α): 6 (higher α improves the approximation to

the sign function but must be chosen carefully with respect to the degree)

• Efficient SIMD Packing

– SIMD batching allows to parallelize kernel evaluations, significantly reducing
latency in encrypted inference. Specifically, the 64 features of the 512 support
vectors can fit int 64× 512 = 32684 slots, taking full advantage of the available
plaintext capacity. Each block of 64 slots computed the kernel between the
encrypted transaction and a support vector.

SIMD Inference Steps

The following steps outline how SIMD operations are leveraged to perform efficient
homomorphic inference:

• SIMD squaring of feature differences

• Local summation to compute squared distances

• Kernel evaluation for each computed distance

• SIMD multiplication of kernels with dual coefficients

• Global summation across relevant slots, followed by bias addition

• Homomorphic sign approximation for the final prediction

Implementation with OpenFHE

All polynomial approximations and evaluations were performed using the OpenFHE
library’s EvalChebyshevFunction method. The approximation intervals were selected
taking into account the outputs of the decision function on the training dataset.

4.3 House Price Prediction
Accurately predicting housing prices is essential in real estate, benefiting everyone

from individual buyers to large-scale investors. However, real-world datasets often include
sensitive information, raising privacy concerns.

This challenge invites participants to build a regression model for estimating housing
prices using Fully Homomorphic Encryption (FHE).

The overall quality of the solutions is primarily assessed by the R-squared score, with
both MAE and MSE also considered in the final assessment.

• Task: Regression

• Dataset: California Housing Prices

• Evaluation Metric:
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– Mean Absolute Error (MAE): calculates the average difference between the
calculated values and actual values. It shows how far the model’s prediction
from the true house price.

– Mean Squared Error (MSE): the average squared difference between the
estimated values and true value. The MSE incorporates both the variance of
the estimator and its bias.

– R-squared (Coefficient of Determination): the proportion of variation in
the dependent variable (y) that is accounted for by the regression line, compared
to the variation explained by the mean of y. Essentially, it measures how much
more accurately the regression line predicts each point’s value compared to
simply using the average value of y.

• Formal Specification:

– Input: Encrypted vector x = (x1, ..., x13)

– Output: Encrypted model prediction indicating the resulted price

4.3.1 Solution: House Price Prediction Using KAN

• Architecture: Kolmogorov-Arnold Network (KAN)

• Encryption parameters:

– Multiplication depth: 13

– Ring dimension: 32768

– Scale mod size: 40

– First mod size: 60

– Batch size: 16384

– Bootstrapping: unused

• Library: OpenFHE [6]

• Performance:

– Accuracy: 85.051%

– Average inference time: 2.401 s/record

Model Selection

We selected the Kolmogorov-Arnold Network (KAN) [20] for its efficiency in regression
tasks and its compact architecture, which requires fewer parameters than conventional
neural networks such as multilayer perceptrons. Specifically, we adopted a Chebyshev
polynomial-based variant known as ChebyKAN [11], which replaces the original spline-based
activations in KAN with Chebyshev polynomials. This substitution not only preserves the
expressive power of the model but also ensures compatibility with HE schemes. Chebyshev
polynomials can be evaluated efficiently using recursive relations and are well-suited for
encrypted computation, as they avoid the complexities introduced by spline interpolation.
As a result, ChebyKAN significantly reduces both computational overhead and ciphertext
level consumption, making it ideal for privacy-preserving inference under HE.
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Model Architecture

The ChebyKAN model used is a two-layer neural network implemented in PyTorch,
with each layer incorporating Chebyshev polynomial operations for non-linear regression.

• Input Normalization: A min-max scaler maps input features to the range [-0.8,
0.8] (instead of the standard [-1, 1]) to provide a safety margin, preventing overflow
when processing unseen test samples during encrypted inference.

• First Layer: Transforms the normalized inputs into a hidden representation by
computing weighted sums of Chebyshev polynomials.

• Activation: Applies a scaled hyperbolic tangent activation (0.9tanh()) to constrain
outputs within [-0.9, 0.9], ensuring numerical stability and preventing overflow.

• Second Layer: Aggregates the hidden representations to generate the final price
prediction using Chebyshev-based polynomial transformation.

Model Training

Training procedures were adapted from an open-source implementation [11]. We
conducted a grid search over the polynomial degrees and hidden layer sizes to maximize
performance, measured by the R2 score on a validation set. The best configuration
identified through this process used a hidden dimension of 32 and a Chebyshev polynomial
degree of 7.

Model Ensembling

To improve prediction robustness and accuracy, we trained multiple ChebyKAN models
with different random initializations and combined their output using an ensemble approach.
Predictions from individual models were aggregated through a weighted combination,
with the weights optimized via the L-BFGS-B algorithm to maximize the ensemble’s R2
score. This ensemble strategy mitigates model variance and achieves superior predictive
performance compared to any single model.

HE Inference

For encrypted inference, we customized the Baby-Step Giant-Step (BSGS) algorithm
to efficiently evaluate Chebyshev polynomials on encrypted data. By using plaintext coeffi-
cient vectors and SIMD evalutation, our modified BSGS approach enables simultaneous
evaluations of multiple polynomials across different inputs. The method requires only
three multiplicative levels to evaluate Chebyshev polynomials of degree 7, minimizing the
depth required for inference.

4.4 k-Nearest Neighbors Search
k-nearest neighbors (kNN) search is used in many AI applications, including recom-

mendation systems, semantic search, retrieval-augmented generation (RAG) systems, etc.
The main idea is to find the most similar entities (products, documents, vectors) to a given
query.

This challenge invites participants to implement a k-nearest neighbors algorithm for
encrypted two-dimensional vectors using cosine similarity. The input vector is encrypted,
while dataset containing the target vectors is not encrypted. The task is to enable kNN
search ensuring the privacy of the query vector and the retrieved nearest neighbors.
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The accuracy of the solution is evaluated using recall@10.

• Task: Vector search

• Dataset: 2D vectors

• Evaluation Metric:

– Recall@10: the percentage of the true ten nearest neighbors that were correctly
retrieved by the solution.

• Formal Specification:

– Input: Encrypted vector x = (x1, x2)
– Output: Encrypted vector containing ten nearest neighbors

4.4.1 Solution: Encrypted Cosine Similarity

• Similarity metric: Cosine similarity

• Encryption parameters:

– Multiplication depth: 100
– Ring dimension: 65536
– Scale mod size: 44
– First mod size: 60
– Batch size: 32768
– Levels available after bootstrap: 6

• Library: OpenFHE [6]

• Performance:

– Accuracy: 100%
– Average inference time: 20.523 s/query

Introduction

The challenge tasks players with finding the k nearest neighbors of an encrypted 2D
vector within a database, using cosine similarity to measure the distance between vectors.
Cosine similarity is defined as d(u,v) = 1− u·v

|u||v| , where u and v are vectors, · denotes the
dot product, and | · | represents the Euclidean norm. A common approach to find k-nearest
neighbors (kNN) in cleartext is to compute the cosine similarity between the query vector
and all database vectors, sort the similarities in descending order, and select the top k
vectors. This can be optimized using data structures like KD-trees or approximate methods
like locality-sensitive hashing for efficiency.

However, a naive implementation of such an algorithm in the HE domain may incur
significant overhead due to the high computational cost of encrypted arithmetic operations,
the need for deep circuits to evaluate non-linear functions like division and square roots in
cosine similarity, limited support for comparison and sorting operations, and the increased
ciphertext size and noise growth in HE schemes.
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Figure 12: Illustration of the angular sector partitioning approach with
M = 50 sectors.

Approach

We adopted an approximated approach that simplifies the kNN problem into a lookup
table. This is based on the observation that two vectors are likely to share similar neighbors
if the angle between them is small. In particular, we partition the 2D plane into M uniform
angular sectors, defined by a set of M vectors v0,v1, . . . ,vM−1, where each vi is equally
spaced at angles 2πi

M from the origin. Here, the i-th sector is the sector between vi−1 and
vi. The neighbor set of a sector is defined as the k nearest neighbors of its bisector ray,
precomputed during initialization. For a query vector x, we identify the sector it falls into
by computing its angle relative to the origin and return the precomputed neighbors of that
sector as its approximate neighbors. Figure 12 illustrates this partitioning approach.

Given a 2D query vector x, we can determine if it falls into the i-th sector by evaluating
the dot products x ·vi−1 and x ·vi and checking if these values have opposite signs. In the
HE domain, this check can be translated to computing the product of the dot products,
i.e., (x · vi−1) · (x · vi) = (x[0]vi−1[0] + x[1]vi−1[1]) ∗ (x[0]vi[0] + x[1]vi[1]), using basic HE
operations. We then apply an approximation of the sign function to the result to check if
the value is negative, confirming sector membership.

It’s straightforward that the accuracy of the prediction increases as the number of
sectors increases, though this comes at the cost of higher computational requirements. At
a very large number of clusters, the accuracy approaches perfection, but the computational
cost may become excessively high. However, given the nonuniform distribution of data
points, we can employ a nonuniform clustering approach to reduce the number of clusters.
This involves denser partitioning in directions with more points and coarser partitioning in
less populated areas. Specifically, we start with a high-resolution partition of M = 5000000
clusters, which achieves perfect accuracy, and then gradually reduce the number of clusters
by merging consecutive clusters that share the same set of k nearest neighbors. This
process is repeated until no further merging is possible, resulting in M = 1001 clusters
after the procedure, significantly reducing the computational overhead. Figure 13 shows an
illustration of the resulting nonuniform partition. The high-level pseudocode for reducing
the number of clusters is as follows:

> For each sector:
> Compute k nearest neighbors of the sector’s center
> Store the neighbor set in a map
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Figure 13: Illustration of the resulting nonuniform partition after
merging clusters.

>
> Sort sectors in ascending order of start angle
>
> Initialize an empty list for merged sectors
> While there are sectors to process:
> Group consecutive sectors with the same k-NN set
> Merge each group into a single sector
> Add the merged sector to the list
> Update the sector list with the merged sectors

HE Implementation

We now describe the HE implementation for determining the sector of a query vector
x and mapping it to the corresponding precomputed k nearest neighbors, using the
sector-based approximation approach. The process is broken down into multiple steps as
follows.

• Step 0:: The process starts with a ciphertext ctx containing the 2D query vector
x = [x[0], x[1]]. The components x[0] and x[1] are placed in the first two slots of the
ciphertext, with all subsequent slots set to zero.

• Step 1: Replicate the query vector across slots: To enable simultaneous
computation across multiple sectors, the query vector x is replicated across the
ciphertext slots. After replication, each pair of slots in ctx (e.g., slots 0–1, 2–3, etc.)
contains the values [x[0], x[1]].

• Step 2: Make a plaintext for sector boundary vectors: A plaintext ptv is
created to store the sector boundary vectors v0,v1, . . . ,vM . For each sector i, the
vector vi is placed in specific slot pairs. For example, slots from 32i to 32i + 31
corresponding to sector i will contain the replications of [vi[0],vi[1]]. This allows for
the computation of dot products with consecutive sector boundaries.

• Step 3: Compute dot products with sector boundaries: For each sector i,
the dot products x · vi−1 and x · vi are computed in the HE domain. This involves
element-wise subtraction between the replicated query vector and the sector boundary
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vectors, followed by rotation and multiplication. Specifically, the dot product x · vi

is calculated as (ctx − ptv) ∗ Rotate(ctx − ptv, 1).

• Step 4: Determine the sign of dot products: To check if x lies between vi−1
and vi, we need to determine if the dot products x · vi−1 and x · vi have opposite
signs. An approximation of the sign function is evalutated over the dot product
results using Paterson-Stockmeyer algorithm, converting the numerical dot products
into boolean indicators (1 if the dot product is positive and 0 if negative).

• Step 5: Identify sector: The sector membership test relies on the fact that x lies
in sector i if (x · vi−1) · (x · vi) < 0, indicating opposite signs. In the HE domain,
this is implemented by multiplying the sign indicators of the two dot products. If
the product is 1 (i.e., one sign is positive and the other negative), x is confirmed to
be in sector i.

• Step 6: Map to precomputed neighbors: Once the sector of x is identified, the
precomputed k nearest neighbors associated with that sector are retrieved. These
neighbors were calculated during the preprocessing phase for each sector’s bisector
ray. The neighbor sets are encoded into a single plaintext and is assigned to the slots
corresponding to the identified sector by multiplication, ensuring that the output
ciphertext only contains the approximate k nearest neighbors of x.

5 Concluding remarks
This paper presents the initial release of the FHERMA FHE Components library —

a collection of fundamental operations and computational primitives designed for use
within fully homomorphic encryption (FHE) frameworks. The current version reflects the
collaborative efforts of a broader community, with the goal of systematizing and validating
reusable building blocks for privacy-preserving computation.

As of this release, the component set includes representative examples from several
key algorithmic domains, including linear algebra, non-linear transformations, sorting, and
selection operations. These components are intended to serve both as implementation
references and as a basis for further optimization and adaptation across various FHE
schemes.

Future work will focus on several directions. First, we plan to incrementally extend the
library with additional components, particularly those arising from concrete application
demands in areas such as privacy-preserving machine learning and secure data analytics.
Second, we intend to maintain regular updates to this document, incorporating community
contributions and tracking improvements in performance, correctness, and generality of
individual components. Third, we aim to improve the structure and modularity of the
library in order to support its use as a foundation for higher-level algorithm design.

In the longer term, we envision the development of a structured reference — a “cookbook”
— that formalizes patterns and practices in FHE algorithm construction. Such a reference
would aim to support systematic reuse, reduce development overhead, and facilitate the
integration of FHE into complex systems by providing well-defined, composable, and
interoperable components.

The sustainability and evolution of this library will rely on continued community
involvement, rigorous documentation, and a shared commitment to advancing the practical
usability of FHE-based computation.
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